
Development of

Tizen Native Application

* This document is based on Tizen 2.4 SDK

2

Table of Contents

Tizen Native Applications Overview 5

Introduction 6

Implementing Basic Mobile Application 7

Implementation Plan 8

Stage 1: Create Mobile Project 10

Stage 2: Create Mobile Emulator 13

Stage 3: Install & Launch the Mobile Project 17

Implementing Basic Wearable Application 20

Implementation Plan 22

Stage 1: Create Wearable Project 23

Stage 2: Create Wearable Emulator 26

Stage 3: Install & Launch the Wearable Project 30

Stage 4: Customize the Wearable Project 32

3

Table of Contents

Deep Learning Tizen Native UI Framwork 38

Understanding of EFL 39

Understanding of Life Cycle 46

Implementing Watch Face Application 48

Implementation Plan 50

Stage 1: Create Watch Project 51

Stage 2: Create Watch Emulator 54

Stage 3: Install & Launch the Watch Project 60

Stage 4: Create Watch Face UI Layout 57

Stage 5: Add Watch Face Functionality 76

4

Table of Contents

Implementing Widget Application 97

Implementation Plan 99

Stage 1: Understanding of Widget 100

Stage 2: Create Widget Project 105

Stage 3: Development of Widget 106

Stage 4: Connection between Widget & UI Application 114

Overview of Tizen Native Application

Native application is operated based on the Native Framework

Introduction Overview

6

Benefits Limitations

• Fast to drive

• Easy to control device

• High performance graphics

• Subordinated to the Platform

• High entry barrier(because of

development language)

C/C++ base

Implementation of Basic Mobile Application

To understand Native app, let’s create a Basic UI project for mobile together.

Tizen Native Application – Mobile Basic

8

Tizen Native Application – Mobile Basic

We will proceed the implementation of the Mobile Basic UI app

in 3 stages.

9

Stage 1.
Create Project

in Tizen SDK

Stage 2.
Create Emulator

for test

Stage 3.
Install and launch

the project to the

Emulator

10

Goal

Let’s create Project for Native UI Application with Tizen SDK

Stage 1: Create Mobile Basic Project

File

New

Tizen

Native Project

11

Goal

Tizen SDK provide templates for various profiles ie.Mobile, Wearable etc.

Choose Mobile and Basic UI

Also, you can change the name of project, and this will affect to the app name

Template

Mobile

Basic UI

Finish

You can change the Project Name

Mobile

Stage 1: Create Mobile Basic Project

12

Goal

Now, you can find your Project on the Project Explorer

To build this project, Two methods are usually used

Stage 1: Create Mobile Basic Project

Click the Project

Click Build Icon

Right Click on

the Project

Build Project

13

Goal

You can observe the progress of build through the Console page

In this page, also you can find error & warning messages

Create [Emulator] to test your project

Stage 2: Create Emulator for test

Click the Emulator

Icon Here

14

Goal

Tizen SDK provide Emulators for various profile(now, mobile and wearable)

For our Mobile Project, choose mobile profile

Stage 2: Create Emulator for test

Click

[Create New Emulator]

Choose [mobile]

15

Goal

Check the name of

Emulator

Choose Resolution

(HD or WVGA)

Change the name of [Emulator] if you want

Another options are given as the Default for Mobile Emulator

You can choose various screen size of [Emulator]

Stage 2: Create Emulator for test

Click [Confirm]

16

Goal

Click Launch

Button Now,

Let’s launch your BasicUI

project on the Emulator

Click Launch Button to launch Emulator

You can find Default Mobile Emulator on the screen

Stage 2: Create Emulator for test

17

Goal

Right Click on

BasicUI Project

Choose

Run As

Choose

Tizen Native Application

To install and launch your Project, just follow the sequence like below

Stage 3: Install & Launch the Project

18

Goal

When you swipe the screen(Lockscreen),

You can find ‘Hello Tizen’ on the white background

When you choose ‘Run As’, project will be installed and launched automatically

Stage 3: Install & Launch the Project

Click Back

button

Find Icon

named ‘basicui’

19

Goal

Good job !

You finished creating project, build and run of the Native UI Application

It was very easy with Tizen SDK

Stage 3: Install & Launch the Project

Click

Implementation of Basic Wearable Application

Now, let’s create a Basic UI project for wearable together.

Tizen Native Application – Wearable Basic

21

We will proceed the implementation of wearable basic UI app in 4 stages.

Stage 1.
Create Project

in Tizen SDK

Stage 2.
Create Emulator

for test

Stage 3.
Install and Launch

the Project

Stage 4.
Customize the

Project

Tizen Native Application – Wearable Basic

22

23

Goal

Let’s create Project for Wearable Native UI Application with Tizen SDK

Stage 1: Create Wearable Basic Project

File

New

Tizen

Native Project

24

Template

Goal

Wearable

Basic UI

Finish

Tizen SDK provide templates for various profile(for Mobile, Wearable, TV)

Choose Wearable and Basic UI

Also, you can change the name of project, at this time change it to ‘Wearable’

You can change the Project Name

Wearable

Change

Project name

Stage 1: Create Wearable Basic Project

25

Goal

Now, you can find your Project on the Project Explorer

To build this project, Two methods are usually used

Click the Project

Click Build Icon

Right Click on

the Project

Build Project

Stage 1: Create Wearable Basic Project

26

Goal

You can observe the progress of build through the Console page

In this page, also you can find error & warning messages

Create [Emulator] to test your project

Click the Emulator

Icon Here

Stage 2: Create Emulator for test

27

Goal

Tizen SDK provide Emulators for various profile(now, mobile and wearable)

For our Wearable Project, choose wearable category

Stage 2: Create Emulator for test

Click

[Create New Emulator]

Choose [wearable]

28

Goal

Change the name of [Emulator] if you want

You also can choose Platform version

Each version provide different resolutions

Stage 2: Create Emulator for test

Check the name of

Emulator

Choose Platform version

(Circle is available

on Tizen 2.3.1)

Click [Confirm]

29

Goal

Now,

Let’s launch your Wearable

project on the Emulator

Click Play Button to launch Emulator

You can find Default Wearable(Circle) Emulator on the screen

Stage 2: Create Emulator for test

Click Launch

Button

30

Goal

Right Click on

GearS Project

Choose

Run As

Choose

Tizen Native Application

To Run(Launch) your Project, just follow the sequence like below

‘Run’ will install the project and launch the project automatically

Stage 3: Install & Launch the Project

31

Goal

You can find ‘Hello Tizen’ on the black background

To find Icon of the project follow the sequence below

Stage 3: Install & Launch the Project

Click Back or

Home button

Swipe Up

Scroll

to the left

Find

‘wearable’ Icon

Back

key

Home

key

32

Goal

Good job !

You finished creating project, build and run of the Wearable Application

It was very easy with Tizen SDK

At this time, we make our own Wearable Application using this project

Look into the source file!!

Stage 4: Customize the Project

Change the

‘Hello Tizen’

Add rectangle

Add another Text

33

Goal

Double click on ‘wearable.c’ file

You can find source code on the right

Stage 4: Customize the Project

Click

‘Wearable’ arrow

Click

‘src’ arrow

Double Click

34

Goal

Find ‘create_base_gui’ function in the ‘wearable.c’ file

Stage 4: Customize the Project

This function makes the view

of the project like right side

35

Goal

The Objects(like window, conformant, label…) will be explained in next slide

Please just follow the instruction this time

Stage 4: Customize the Project

Recommend do not

change (This form is

standard)

This label is for

‘Hello Tizen’ text on the

screen

Conformant is pre-

formed layout (It has

several empty parts to

put the object like label,

content, indicator etc)

36

Goal

Let’s change the text ‘Hello Tizen’

Add Rectangle like below

Stage 4: Customize the Project

RGBA value

‘Hello Tizen’ > ‘Good Luck’

Some objects require certain parent.

‘rectangle’ object should be added to the ‘Evas’

37

Goal

Finally add another Text at the bottom

Stage 4: Customize the Project

Font style & size

Text object also require

‘Evas’ as a parent

Wearable default window size is 360x360.

There are some APIs for the certain object like ‘evas_object_text_text_set ()’.

If you know what APIs are related to the object,

you can easily develop Tizen Native Application.

Deep Learning about Tizen Native UI Framework

39

Goal

Then, What is the EFL ?

The Objects you used before, like window, conformant, rectangle,

and label are provided by EFL

Especially, Tizen Native Application is implemented by EFL

Understanding of Native UI Framework - EFL

40

Goal

Tizen Native Development is like a drawing on the window

But to draw something, so many things are required and it is very complex

Understanding of Native UI Framework - EFL

To make drawing easy,

EFL provide Simple Method

So, EFL can be called as a

‘The set of Graphical

User Interface Toolkit Library’

Also, it provides complete component

like button, image and check box,

makes development more

visual and convenient

41

Goal

EFL is made up of so many parts like below

With these parts, EFL offer many advantages for Tizen development

Understanding of Native UI Framework - EFL

EFL provide advantage of

Elementary

EFL

ECTOR

GUI

Theme

Animation

User Input Event

Various profile environment

IPC/Socket Connection

3D Graphic

Video/Sound Output

In this Class, we’ll look into two parts

Most used parts, EVAS and Elementary

42

Goal

EVAS is Canvas and Rendering Engine

Understanding of Native UI Framework - EFL

Rendering

based on Scene Graphic

Tracking all objects that are able to be

displayed on the screen

Supervise screen output of the

objects(Font, image loading,

blending, scaling etc.)

Partial rendering: Only updated part

be rendered and not visible part

rendered though it exists on the

screen

evas_object_color_set

evas_object_text_font_set

evas_object_image_file_set

evas_object_scale_set

evas_object_resize

evas_object_move

evas_object_show

evas_object_hide

Using these APIs,

Control the Output of

the screen

43

Goal

Elementary is more visual and kind

Components frequently used on development are provided as completed form

Understanding of Native UI Framework - EFL

Not only visual element(button,

checkbox, image etc), but also non visual

element(container: scroller, table, box

etc) are provided

Theme: Using various Theme, different

Look & Feel can be shown on the same

component

Screen flexibility: Ensure profer scalability

according to the resolution

44

Goal

Elementary involves several parts of EFL like Evas, Edje, Ecore etc…

This means that Elementary do not provide only the shape of component

but also operation, theme and scale etc

Understanding of Native UI Framework - EFL

void create_base_gui()
{
 /* Window */
 Evas_Object *win = elm_win_util_standard_add(PACKAGE, PACKAGE);

 /* Button */
 Evas_Object *btn = elm_button_add(win);
 elm_object_text_set(btn, “Default");
 evas_object_smart_callback_add(btn, "clicked", btn_clicked_cb, NULL);
 evas_object_move(btn, 150, 300);
 evas_object_resize(btn, 400, 350);
 evas_object_show(btn);

 /* Image */
 Evas_Object *img = elm_image_add(btn);
 elm_image_file_set(img, "icon.png", NULL);
 elm_object_content_set(btn, img);

 evas_object_show(win);
}

Elementary APIs start with ‘elm’

Button is provided as set click event be

available, familiar shape, be able to write

text and icon and text position

previously by Elementary

45

Goal

So, using EFL is simple.

You just need to know what components are provided,

what API is related to them.

If you need more information, access to the below

Understanding of Native UI Framework - EFL

• Source in Tizen

• https://review.tizen.org

• EFL : platform/upstream/efl

• Elementary : platform/upstream/elementary

• UI Practices

• https://developer.tizen.org/development/ui-practices/native-application/efl

• API reference

• https://developer.tizen.org/dev-

guide/latest/org.tizen.native.mobile.apireference/EFL.html (EFL)

• https://developer.tizen.org/dev-

guide/latest/org.tizen.native.mobile.apireference/Elementary.html (Elementary)

https://developer.tizen.org/development/ui-practices/native-application/efl
https://developer.tizen.org/development/ui-practices/native-application/efl
https://developer.tizen.org/development/ui-practices/native-application/efl
https://developer.tizen.org/development/ui-practices/native-application/efl
https://developer.tizen.org/development/ui-practices/native-application/efl
https://developer.tizen.org/development/ui-practices/native-application/efl
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/EFL.html
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/EFL.html
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/EFL.html
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/Elementary.html
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/Elementary.html
http://developer.tizen.org/dev-guide/latest/org.tizen.native.mobile.apireference/Elementary.html

46

Goal

To develop your own Tizen Native Application, you need to know last one more

The Life Cycle of Tizen Native Application

Understanding of Native UI Framework - Lifecycle

int
main(int argc, char *argv[])
{
 appdata_s ad = {0,};
 int ret = 0;

 ui_app_lifecycle_callback_s event_callback = {0,};

 event_callback.create = app_create;
 event_callback.terminate = app_terminate;
 event_callback.pause = app_pause;
 event_callback.resume = app_resume;
 event_callback.app_control = app_control;

 ret = ui_app_main(argc, argv, &event_callback, &ad);
 if (ret != APP_ERROR_NONE) {
 dlog_print(DLOG_ERROR, LOG_TAG, "app_main() is failed. err = %d", ret);
 }

 return ret;
}

You can find ‘ui_app_lifecycle_callback’

in all of Native Application main source files

Don’t

need to change this

Just know when

these callbacks

are called

47

Goal

There are five state of Native Application

These states are changed by Life Cycle Callback function like below

Understanding of Native UI Frame Work - Lifecycle

app_create:

 Called when the process starts

 In this, Creating UI components is recommended

app_control:

 Called after the ‘app_create’ and

 when receive the launch request on running state

 from other process

app_resume:

 Called when the window of the application is shown

app_pause:

 Called when the window of the application is hide

app_terminate:

 Called when the process of the application

 is terminating

 and after the main loop quits

Life Cycle

of Native Application

Implementation of Watch Face Application

49

Goal

Let’s make a Watch Face UI Application

It is easy to develop anything you want if you are familiar with Tizen SDK

Follow up, and make your own Watch Face

Implementation - Watch Face UI Application

Tizen will provide wonderful

experience on your development

We will proceed the implementation of watch face UI app in 4 stages.

Stage 1.
Create Project

in Tizen SDK

Stage 2.
Create Emulator

for test

Stage 3.
Create user

interface layout

Stage 4.
Add operation to

the watch layout

Implementation – Watch Face UI Application

50

51

To start Development,

Create New [Tizen Native Project] !

SDK provide some Templetes for the easy start

Stage 1: Create Watch Project Goal

File

New

Tizen

Native Project

52

Templete

Stage 1: Create Watch Project Goal

Wearable

Watch

Finish

Choose the Template most similar with what you want to develop

In this case, we’ll choose Watch Template for Watch Face

You can change the Project name for
your Watch Face

Wearable

53

Stage 1: Create Watch Project Goal

Now, you can find your Project on the Project Explorer

SDK also provide [Emulator] for the test of your development

Let’s launch [Emulator] from now

If you succeed to launch Emulator,

you can find Emulator here like this

54

Stage 2: Create Emulator for test Goal

Tizen SDK provide Emulators for various profile(now, mobile and wearable)

For our Wearable Project, choose wearable category

Click

[Create New Emulator]

Choose [wearable]

55

Stage 2: Create Emulator for test Goal

Change the name of [Emulator] if you want

You also can choose Platform version

Each version provide different resolutions

Check the name of

Emulator

Choose Platform version

(Circle is available

on Tizen 2.3.1)

Click [Confirm]

56

Stage 2: Create Emulator for test Goal

Now,

Let’s launch your Watch

project into the Emulator

Click Play Button to launch Emulator

You can find Default Watch on the screen

Click Launch

Button

57

Stage 2: Create Emulator for test Goal

Right Click on

Watch Project

Choose

Run As

Choose

Tizen Native Application

To launch your Project, just follow the sequence like below

58

Stage 2: Create Emulator for test Goal

Although you can’t see

your Watch, it is already setup,

and you can find it in the

‘setting menu’

You can find that there’s no change

Some Project like Watch, can’t be applied to the Target(emulator) automatically

User must launch manually

59

Stage 2: Create Emulator for test Goal

Slide Up
Click

Settings

Click

Clock

Click

Last One

Clock is

changed

Check

Home

Go to Setting and click Clock menu

You can find ‘Default Tizen Icon’ for your Watch project

After select your Watch, press Home button of the right bottom

60

Stage 3: Create user interface layout Goal

Change the given Watch to Watch Face like below

Let’s analyze the Watch Face

Watch Face is made up of 9 Images

We’ll change above watch
to the below

Divide into 9 parts

61

Stage 3: Create user interface layout Goal

Right Click on

‘res’

New

Folder

Write down

Folder name

[images]

Finish

At first, to use Images, make folder for Image files

62

Stage 3: Create user interface layout Goal

New
Copy

Paste

Copy Images and paste them to ‘image’ folder

Folder:

 src: C file is located

 inc: Header file is located

 shared: Resources needed

 to be shared is located

Now, let’s look into

source file ‘Watch.c’

These images are given
by instructor

63

Stage 3: Create user interface layout Goal

To make Watch Face , you should modify the ‘watch.c’ file

In this file, create each image part of Watch Face

Follow the given codes.

Double click on

watch.c file

to open the file

Find the code

on the right side

64

Stage 3: Create user interface layout Goal

Don’t need this
Delete !!

Start with ‘create_base_gui’ function

This function create essential object window, conformant for your Watch

We also make each image of the Watch in this function

Conformant is used normally

like this way !!

Recommend do not change !!

65

Stage 3: Create user interface layout Goal

As told, to we make Watch Face using Images saved in the ‘images’ folder

How can we use these image in the watch.c file?

The given function by EFL, ‘app_get_resource_path()’ get the path of ‘res’ folder

Get & Save the path of ‘res’ !!

‘resource_path’ indicates ‘res’ !!

Stage 3: Create user interface layout

To make Watch Face , you should modify the ‘watch.c’ file

In this file, create each image part of Watch Face

Follow the given codes.

Double click on

watch.c file

to open the file

Find the code

on the right side

Goal

66

Stage 3: Create user interface layout

Don’t need this
Delete !!

Start with ‘create_base_gui’ function

This function create essential object window, conformant for your Watch

We also make each image of the Watch in this function

Conformant is used normally

like this way !!

Recommend do not change !!

Goal

67

Stage 3: Create user interface layout

As told, to we make Watch Face using Images saved in the ‘images’ folder

How can we use these image in the watch.c file?

The given function by EFL, ‘app_get_resource_path()’ get the path of ‘res’ folder

Get & Save the path of ‘res’ !!

‘resource_path’ indicates ‘res’ !!

Goal

68

Stage 3: Create user interface layout

First, create background image for Digital Watch

Follow up, below sequence

And let’s study the each code

Create empty object for background

Set image file to the object

Locate the object properly

Set the size for the object

Show the object

Get the path of background image file

Goal

69

Stage 3: Create user interface layout

EFL offer each APIs for effective development

Also EFL offer intuitive APIs for understanding what this API is for

Let’s match the APIs with purpose

Create empty object for background

Set image file to the object

Locate the object properly

Set the size for the object

Show the object

Get the path of background image file

(0.0)

(360.360)

360

360

Goal

70

Stage 3: Create user interface layout

180 = 360/2 = middle of width & height

65 = distance between week_day and middle

55 = size of week_day & week_day_frame

Second, create day image for Digital Watch

Day image is not used for background

For image object, EFL, offer ‘elm_image_xxx’ APIs

Two image objects

are needed to

display the day

week_day =

week_day_ frame =

55/2

65

This coordinate is left top
of the ‘week_day_frame’

Goal

71

Stage 3: Create user interface layout

180 = 360/2 = middle of width & height

21 = distance between moon and middle

102 = size of moon & moon_frame

Third, create moon image for Watch Face

This is also image object like day

Just check size and position

Two image objects

are needed to

display the moon

moon =

moon_frame =

102/2

21

This coordinate is left top
of the ‘moon’

Goal

72

Stage 5: Create user interface layout

180 = 360/2 = middle of width & height

14 = width & height of center

18 = width of hour_hand

88 = height of hour_hand

17 = distance between center and end of hour_hand

Fourth, create center & hour hand of the clock

This is also image object like others

Just check size and position

center =

hour_hand =

17

14x14

Check cross part

that each hand is

overlapped

This coordinate is left top
of the ‘center’

This coordinate is left top
of the ‘hour_hand’

Goal

73

Stage 3: Create user interface layout

Fifth, create min & sec hands of the clock

This is also image object like others

Just check size and position
sec_hand =

= min_hand

20

15

15 = width of sec_hand

15 = distance between center and end of sec_hand

87 = height of sec_hand

12 = width of min_hand

20 = distance between
center and

end of min_hand

132 = height of min_hand

This coordinate is left top
of the ‘min_hand’

This coordinate is left top
of the ‘sec_hand’

Goal

74

Stage 3: Create user interface layout

Now, we finish the development of Watch Face UI

But, this watch looks like strange

Because hands of the clock are overlapped, and is not working

So, next we make this watch work properly

Clock hands are not working

Moon is not working

Day is not working
Next, Let’s make it work

Goal

75

Stage 4: Add operation to the watch

From now, we move the images we’ve already made

We put all our code into ‘create_base_gui()’ function before

At this time we make another function for moving the clock

Find ‘app_create’ function

We’ll make another function

‘set_the_time’ for moving the clock

To access to images we’ve made

at the another function, we should

make these image objects global

variables

Put into global struct variable

‘appdata’ to control easily

Goal

76

Stage 4: Add operation to the watch

Compare with regional variable code

Evas_Obeject

*week_day = NULL

Removed

week_day

ad->week_day

week_day is already

declared in structure

‘ad’

Goal

77

Stage 4: Add operation to the watch

Compare with regional variable code

Evas_Obeject

*moon = NULL

Removed

moon

ad->moon

moon is already

declared in structure

‘ad’

Goal

78

Stage 4: Add operation to the watch

Compare with regional variable code

Evas_Obeject

*hour_hand = NULL

Removed

hour_hand

ad->hour_hand

hour_hand is already

declared in structure

‘ad’

Goal

79

Stage 4: Add operation to the watch

Compare with regional variable code

Evas_Obeject

*min_hand = NULL

Evas_Obeject

*sec_hand = NULL

Removed

min_hand,

sec_hand

ad->min_hand,

ad->sec_hand

Min_hand &

sec_hand are already

declared in structure

‘ad’

Goal

80

Stage 4: Add operation to the watch

Now, make ‘set_the_time’ function with Structure ‘ad’

Make ‘set_the_time’ function

over the ‘app_create’ function

Call ‘set_the_time’ function, after

‘create_base_gui’ function

Pass the ‘ad’ as a

parameter

Goal

81

Stage 4: Add operation to the watch

To move the clock according to the current time,

you should get the current time

Tizen provides APIs to get current time easily

This is pre-made handler for store of

several kinds of time information

Ex) hour, minute, second, day and 24hour

This function get current time information

and save it to the watch_time handler
Get current hour type of 24hour Ex) 23

Get current hour type of 12hour Ex) 11

Get current hour type of minute Ex) 33

Get current hour type of second Ex) 58

Get current hour type of 24hour

Ex) 1->sun, 2->mon, 3->tue…….

Goal

82

Stage 4: Add operation to the watch

First, we change the day according to current time

Use variable ‘day’ that has day information of the current

Make ‘update_the_day’ function

over the ‘set_the_time’ function

Parameter ‘day’ determine

what image will be used for the ‘ad->day’

Set that image file to the ‘ad->day’

Day is changed !!

Goal

83

Stage 4: Add operation to the watch

Second, we move the moon according to current time

Tizen provide APIs for easy transformation of the object

Among them, Let’s study ‘evas_map_new’ API

Create four points

Make ‘move_the_moon’ function

over the ‘set_the_time’ function

Moon image is
rotated!!

This fill out four point with four cooridinates of ‘ad->moon’

Rotate four point of ‘m’ by degree, and center of the ‘m’ is

a center axis

This means that move ‘ad->moon’ to rotated position of ‘m’

Destroy the ‘m’ after rotation

102/2

21

24*15 = 360

Goal

84

Stage 4: Add operation to the watch

Third, we move the hour_hand according to current time

Use ‘evas_map_new’ API to rotate the hour_hand

Important thing is the ‘degree’

Make ‘move_the_hand’ function

over the ‘set_the_time’ function

hour_hand is
rotated!!

12*30 = 360

Make just one function for all clock hands

Pass each hand as a parameter

Center axis for rotation is the center of the Watch

Goal

85

Stage 4: Add operation to the watch

Fourth, we move the min_hand according to current time

Use ‘evas_map_new’ API to rotate the min_hand

Important thing is the ‘degree’

Call ‘move_the_hand’ function you’ve made before

min_hand is
rotated!!

60*6 = 360

Pass ‘ad->min_hand’ as a parameter

Center axis for rotation is the center of the Watch

Goal

86

Stage 4: Add operation to the watch

Fifth, we move the sec_hand according to current time

Use ‘evas_map_new’ API to rotate the sec_hand

Important thing is the ‘degree’

Call ‘move_the_hand’ function you’ve made before

sec_hand is
rotated!!

60*6 = 360

Pass ‘ad->sec_hand’ as a parameter

Center axis for rotation is the center of the Watch

Goal

87

Stage 4: Add operation to the watch

We make our Watch display the accurate time according to current time

But, there is one more thing we have to do

Let’s look into the position of our function ‘create_base_gui’ & ‘set_the_time’

Our code for Watch is here

In ‘app_create’ function

And then,

When this ‘app_create’ function

will be called ?

How often this ‘app_create’ function

will be called?

To answer this,

Let’s understand lifecycle Of

Tizen Native Application

This is very important
to update our Watch

Goal

88

Stage 4: Add operation to the watch

In normal Applications of Tizen, there are Five Lifecycle Callback function

‘app_create’ will be called just one time

from launch to terminate

Especially, some application like Watch

has more lifecycle callback functions

‘app_control’ will be called if application

is already launched when the another

application request to launch

‘app_pause’ will be called if window

of the application is covered or hidden

‘app_pause’ will be called if window

of the application is show

‘app_pause’ will be called when terminate

the application

Goal

89

Stage 4: Add operation to the watch

In normal Applications of Tizen, there are Five Lifecycle Callback function

‘app_time_tick’

will be called every seconds

Using these Lifecycle Callback functions,

we can update our watch every seconds

‘app_ambient_tick’

will be called every miutes &

when watch become ambient or not

‘app_pause’

will be called when

watch become ambient or not

Goal

90

Stage 4: Add operation to the watch

We’ll update our Watch every seconds

It’s very easy to update Watch if you understand about Lifecycle

Remove given code as default

(we don’t need to use this)

Call ‘set_the_time’ function

In ‘app_time_tick’ function

Call the function you want to

be called every minutes

Call the function you want to

be called when application

become ambient or not

Goal

91

Stage 4: Add operation to the watch

In addition, you can change the Icon for your Watch

Double click on

‘tizen-manifest.xml’

You can find Overview of

the Watch Project on the right

If you change this,
Icon will be changed

Goal

92

Stage 4: Add operation to the watch

In addition, you can change the Icon for your Watch

New Icon

Browse…

Select Image

you want

You can find the image

you selected on the list

OK

Goal

93

Stage 4: Add operation to the watch

In addition, you can change the Icon for your Watch

Icon is changed !!

Also, in the settings menu

you can find changed Icon

Goal

94

Stage 4: Add operation to the watch

Finally, remove the unused code

Tizen SDK show the warning in the source code like below

Track the warning

symbol and check

the reason

In this case,

there’s unused code !

Remove &

Run the Watch project !

Goal

95

Stage 4: Add operation to the watch

Now, you get the Watch Face with Tizen

You can customize more, change image, display battery information and so on

If you want to be more familiar

with Tizen, visit here

https://developer.tizen.org/

Goal

96

Implementation of Widget Application

There are two types of Native Application

One is UI Application you already experienced

The another is Widget Application you will experience from now

Widget Applications

Can be found at the

Homescreen

Same widgets can be found

To show different information

Widget Application

can be connected with

UI Application

Overview – Widget Application

98

Overview

99

Stage 1.
Understanding of

Widget Application

Stage 2.
How to develop

Widget Application

Widget Application

Main

Thread

Recv

Thread

widget core /

widget_provider_app

com-core

libwidget_service

We will proceed the implementation of widget app in 2 stages.

Implementation Plan

Stage 1: Understanding of Widget Application

The crucial difference between UI App and Widget App is Life Cycle

Widget Application has one more step of life cycle for Instance

There are only two

Life Cycle Callbacks

So, Application state

is more simple than

UI Application

But, there are one more step of life cycle,

Let’s go to ‘widget_app_create’

Goal

100

Stage 1: Understanding of Widget Application

Widget Application can be made multiple same widget instances

Because of this, Widget Application should have Life Cycle for Instance

UI Application create UI

component in ‘app_create’

Widget Application just

create Class for widget

Instance in ‘app_create’

UI for each Widget

Instance be create in

‘widget_instance_create’ Widget Instance’s

Life Cycle Callbacks & state

Goal

101

Stage 1: Understanding of Widget Application

Widget Instance state is more similar with UI Application state

There are Five states and Six Life Cycle Callbacks

widget_instance_create:

 Called after the widget instance is created

widget_instance_destroy:

 Called before the widget instance is destroyed

widget_instance_pause:

 Called when widget invisible

widget_instance_resume:

 Called when widget is visible

widget_instance_resize:

 Called before widget size is changed

widget_instance_update:

 Called when an event for updating widget is received

Life Cycle

of Widget Instance

Goal

102

Stage 1: Understanding of Widget Application

Multiple creating of Instance progress is like below

After Widget Application initialization at the beginning,

launch request goes to ‘widget_instance_create’ directly like below

One process(Main Loop),

Multiple Instances

Because of One Process,

if Widget Application is

terminated,

Every Instances are

terminated

Goal

103

Let’s make a Alarm Widget Application

Follow up, and make your own Alarm Widget

Stage 2: Development of Widget

Tizen will provide wonderful

experience on your development

Goal

104

Create Project for Wearable Widget Application using Template

Template

Wearable

Check Project name

Choose Widget

Finish

Stage 3: Development of Widget Goal

105

At first, analyze the Alarm Widget

In this class, we just create Main View for state of no alarm like below

Stage 4: Development of Widget

Main View consists of

Three Parts

Text part for Title

Button part for click

event with image

Text part for detail

explanation text

So, we need two text objects and one

button object

Run & check Template

Goal

106

Check source files

Create ‘images’ folder under ‘res’ folder

Stage 4: Development of Widget

This folder is for images

that we will use for button object

Copy

Paste

Goal

107

It is recommend do not changed the Window and Conformant

Stage 4: Development of Widget

‘label’ is also for text

So, we need two objects

for Button and one more text

On the top of ‘widget.c’ file,

‘widget.h’ file is included

This library provide many

useful APIs

This window is dependent on

the Homescreen

This allow user to get data

structure ‘wid’ at any functions

with ‘context’

These values are decided

by ‘tizen-manifest.xml’

Goal

108

Stage 4: Development of Widget

Change some options of ‘label’ for Title

Add another ‘label’ for Detail Text

300

This way, can set font style,

size, align etc

80

(80, 50)

160

80

(110,260)

Default text color is white

Goal

109

Stage 4: Development of Widget

Add button for ‘click event’

When the button is clicked, we should do something

Button’s default style is rectangle and blue

(131, 131)

49

49

(180, 180)

Because, size of image for

button is 98x98

Starting coordinate is left top,

To set to center, move to – (button size/2)

from center

This function register callback function

will be operated when button is clicked

Goal

110

Stage 4: Development of Widget

Add Image object to set button image

Get image path as same way that you already did before

Indicate ‘res’ folder

Indicate

[res/images/alarm_no_alarm_icon.png] file

Set image file to image object

This function set image object to the button

How can resolve this problem?

But, is looks strange

Because default style of the button is blue

and Image file we used is transparent

Goal

111

Stage 4: Development of Widget

Add button style

Check whether click event is working properly or not

Add ‘transparent’ style

to make button transparent

How to check ‘click event’ ?

DLOG_DEBUG : D

DLOG_WARN : W

DLOG_ERROR : E

In ‘inc/widget.h’ file,

this log tag is declared

Goal

112

Stage 4: Development of Widget

Good job !!

We finished to develop Alarm Widget Application

But there is one more thing !!

Widget Application can be connected with UI Application !!

Next class,

We will connect Alarm Widget

with Alarm UI Application

Goal

113

Stage 5: Connection between Widget & UI

The most important thing to connect Widget with UI App is,

how to share the data between Widget and UI App

The mechanism for sharing the data is like below

1. To add alarm, request launch

the alarm UI Application

2. When UI App has some change,

 write the information of change

 to the memory area

3. When the Widget has some change,

write the information

to the memory area

4. Widget and UI App monitoring

the change of memory area

and read the change

Goal

114

For this mechanism, two APIs are required

The One is ‘app_control’ to request launch the UI Application

Another is ‘preference’ to write to and read the data from memory area

app_control

This API is used when an application launch the another application

It also deliver the data when send request

preference

This API is used when save the data permanently

Data is saved as key-value pair

With this API, it is possible to recognize the change of the data

And One more thing you should do

before use these APIs

Stage 5: Connection between Widget & UI Goal

115

To connect and to share the data,

Widget and UI App must be packaged as one Application

Because, the memory area where the data will be stored by ‘preference’ is located

in one App’s data directory

org.example.alarm

org.example.alarm

org.example.widget

org.example.alarm: RW

This data area is

allowed to only

packaged application

like this

So, we should package

Widget and UI

Application

Stage 5: Connection between Widget & UI Goal

116

Import ‘Alarm’ UI Application given as a sample

to connect with Widget Application

Right click -> Import
Existing Projects into

Workspace -> Next

Select archive file ->

Browse..

Finish

Select given sample

‘Alarm’ tar.gz

You can find ‘Alarm’

on the ‘Project Explorer’

Now, let’s package these Applications

Stage 5: Connection between Widget & UI Goal

117

Check two projects in the ‘Project Explorer’

The One is ‘Alarm’ as a UI Application

Another is ‘Widget’ as a Widget Application

To share the data using ‘preference’,

package these two application

Alarm(right click)

Properties

Stage 5: Connection between Widget & UI Goal

118

Choose which Application will be packaged

Tizen SDK

Package

Multi

OK

Check ‘Widget’

After finished packaging,

when you run the ‘Alarm’,

the ‘Widget’ also be run

Stage 5: Connection between Widget & UI Goal

119

Run ‘Alarm’ UI Application

Right click

on ‘Alarm’
Run As

Tizen Native

Application

You can find this warning

Because after packaging, these two applications will

use same data directory, there should not be same

file name

Let’s check file directory of

two Applications

Stage 5: Connection between Widget & UI Goal

120

Find ‘res’ , ‘shared’ folder

These two folders are the most critical folder

Same name of the file

should be changed
Change ‘preview.png’

-> ‘widget.png’

Double click

[tizen-manifest.xml]

Click this tab

Change [preview] -> [widget]

for preview image of the

application

[tizen-manifest.xml] is

where the properties of

the application is listed

{appid, pacakge name,

Icon, image and size of

preview and etc…}

Stage 5: Connection between Widget & UI Goal

121

Run ‘Alarm’ again

Find [Alarm] launched Swipe to the left Click [+] button

Find [Widget]’s preview

and click
Find [Widget] launched

Click back key

Let’s check what scenario

we will implement

Stage 5: Connection between Widget & UI Goal

122

There are three scenario that are available below

1. Launch ‘Alarm’ to set alarm

2. Write the information

regarding with alarm to the data

3. Read the information

regarding with alarm

And draw [alarm view]

Stage 5: Connection between Widget & UI Goal

123

Launch [Alarm] UI Application using [app_control]

(Add privilege to use [app_control])

At first, to use [app_control]

we need to add privilege

1. Open [tizen-manifest.xml]

 of the [Widget]

2. Click [Add]

3. Search [appmanager.launch]

 and Select

4. [ctrl + s] Save

Stage 5: Connection between Widget & UI Goal

124

Launch ‘Alarm’ UI Application using ‘app_control’

(When you click the [Alarm Image], [Alarm] UI Application should be launched)

Find ‘_add_alarm_cb’ in the

‘widget_instance_create’ function you already set to the button

This parameter means using

‘app_control’ to request launch(there are other

parameters and ‘app_control’ can send other requests)

Set ‘app_id’ of the Application

will be launched to the ‘app_control’

Pass ‘context’

instead of ‘NULL’

Add ‘app_control’

Stage 5: Connection between Widget & UI Goal

125

Get [instance_id] to identify certain instance and use this ID as a [key] for saving the data

(Next, when we use ‘preference’ to save & monitoring & read the data, this ‘key’ is very important)

[app_control] also send the data using [key-value] pair

To inform [instance_id] to the UI App, save and send [instance_id] using [app_control]

[app_control] must be freed after sending the request [Alarm] UI should received this

request using [app_control]

Launch [Alarm] UI Application using [app_control]

(Set [instance_id] for distinguish the widget instance between multiple instances)

Stage 5: Connection between Widget & UI Goal

126

Launch [Alarm] UI Application using [app_control]

(Open [Aalrm/src/main.c] to check the code regarding launch request from

[Widget])

Find [app_control] function in the [main.c]

When the Application will receive

the [app_control] signal, the

[app_control] function will be

operated first

Get the information to check what operation will be operated

[Widget] send [APP_CONTROL_OPERATION_DEFAULT] and this

mean that launch the Application

Get the data saved in [app_control] using

[INSTANCE_ID_FOR_APP_CONTROL] key(this is defined as

‘widget_instance_id_for_app_control’ same with what we used in [Widget])

Stage 5: Connection between Widget & UI Goal

127

Launch [Alarm] UI Application using [app_control]

(Run and check the operation)

Find [Alarm] launched Click [+] button
Find [Widget]’s preview

and click

Find [Widget] launched

Press back key

Click alarm image

Find [Alarm UI App]

launched

Let’s Set alarm using

[Alarm] UI Application

Stage 5: Connection between Widget & UI Goal

128

Find [Alarm] launched Click number of [Hrs] Click number of [Mins]

Click alarm image

How can display this alarm

information on the [Widget]?

Rotate this

Point to change

 the number

Click set button Check the alarm

Set alarm to the [Widget] using [preference]

(When alarm UI application set the alarm what widget should display?)

Stage 5: Connection between Widget & UI Goal

129

Set alarm to the [Widget] using [preference]

(Check [Alarm] code regarding [preference])

Find [_alarm_set_time_for_widget] function in [main.c] file

When the button filled with clock image is clicked, this function be called

Get the time information

Save the data to bundle

as a [key-value] pair

Actually, we should

know is this function

Let’s go to the

[data_set_widget_alarm_t

o_preference] function

This [instance_id] is

from [Widget] using

[app_control]

Stage 5: Connection between Widget & UI Goal

130

Set alarm to the [Widget] using [preference]

(Set the data to the [preference])
[s_info.widget_data_b] has many

information formed [key-value] pair

[preference] only can save data that

is formed [key-value] pair

But data type [bundle] is not formed

[key-value] pair

So [bundle_encode] change bundle’s

type to (const char *) to use as a

value of [key-value] pair

Set bundle has many information as

a value to the key named

[instance_id]

Through this function, any application can use same data

directory with [Alarm] application and know the [instance_id],

can get the bundle data that is set by [Alarm]

Stage 5: Connection between Widget & UI Goal

131

Set alarm to the [Widget] using [preference]

(Monitoring data using [preference])

First, add [app_preference.h] header file to use [preference]

on the top of [widget.c] file

To monitoring the key [instance_id]

Initialize the key [instance_id]

This means that if the value of the key [instance_id] is changed

[_alarm_changed_data_with_preference] function will be operated

In this function,

read and apply the

information to the [Widget]

Stage 5: Connection between Widget & UI Goal

132

Set alarm to the [Widget] using [preference]

(Reading the data using [preference])

Check the log to find whether this

function is called

Get the string refer to the

bundle saved data

Get the [len] that is another

key to get bundle

Get bundle from [r] & [len]

Get alarm time from bundle

using key [AlarmTime]

Let’s display

alarm time

on the [Widget]

Stage 5: Connection between Widget & UI Goal

133

Set alarm to the [Widget] using [preference]

(Display the alarm time on the [Widget])

To show the alarm time,

change the view like below

Delete

1

Change the text

and move the position

2

Change the image

and move the position

3

Stage 5: Connection between Widget & UI Goal

134

Set alarm to the [Widget] using [preference]

(You should modify each local variables like button, detail_text and img declared in

[widget_instance_create] function

Add these variables to the

structure variable [widget_instance_data_s]

This structure [wid] should be set to the [context]

Get [wid] in the any function using [context]

Stage 5: Connection between Widget & UI Goal

135

Set alarm to the [Widget] using [preference]

(Show the time using [wid->label] variable)

150

300

(60, 80)

Apply text style like this way

To add text style command to the

time text, use [snprintf]

Set text color [white]

Stage 5: Connection between Widget & UI Goal

136

Check the Connection between Widget and UI Application

Find [Alarm] launched Click [+] button Find [Widget]’s preview

and click

Find [Widget] launched

Click back key

Click alarm image

Find [Alarm] launched Click number of [Hrs]

Stage 5: Connection between Widget & UI Goal

137

Check the Connection between Widget and UI Application

Click number of [Mins]

Rotate this

Point to change

 the number

Click set button Check alarm

Click

Home button

Swipe to the left Find alarm widget

If you want to be more familiar

with Tizen, visit here

https://developer.tizen.org/

Stage 5: Connection between Widget & UI Goal

138

